Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
PLoS Pathog ; 20(1): e1011557, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38277417

RESUMO

A proposed treatment for malaria is a combination of fosmidomycin and clindamycin. Both compounds inhibit the methylerythritol 4-phosphate (MEP) pathway, the parasitic source of farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively). Both FPP and GGPP are crucial for the biosynthesis of several essential metabolites such as ubiquinone and dolichol, as well as for protein prenylation. Dietary prenols, such as farnesol (FOH) and geranylgeraniol (GGOH), can rescue parasites from MEP inhibitors, suggesting the existence of a missing pathway for prenol salvage via phosphorylation. In this study, we identified a gene in the genome of P. falciparum, encoding a transmembrane prenol kinase (PolK) involved in the salvage of FOH and GGOH. The enzyme was expressed in Saccharomyces cerevisiae, and its FOH/GGOH kinase activities were experimentally validated. Furthermore, conditional knockout parasites (Δ-PolK) were created to investigate the biological importance of the FOH/GGOH salvage pathway. Δ-PolK parasites were viable but displayed increased susceptibility to fosmidomycin. Their sensitivity to MEP inhibitors could not be rescued by adding prenols. Additionally, Δ-PolK parasites lost their capability to utilize prenols for protein prenylation. Experiments using culture medium supplemented with whole/delipidated human plasma in transgenic parasites revealed that human plasma has components that can diminish the effectiveness of fosmidomycin. Mass spectrometry tests indicated that both bovine supplements used in culture and human plasma contain GGOH. These findings suggest that the FOH/GGOH salvage pathway might offer an alternate source of isoprenoids for malaria parasites when de novo biosynthesis is inhibited. This study also identifies a novel kind of enzyme related to isoprenoid metabolism.


Assuntos
Diterpenos , Fosfomicina/análogos & derivados , Hemiterpenos , Parasitos , Pentanóis , Humanos , Animais , Bovinos , Parasitos/metabolismo , Fosfatos , Terpenos/farmacologia , Terpenos/metabolismo
2.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37291700

RESUMO

Ubiquinone (UQ) is a fundamental mitochondrial electron transport chain component. This compound is synthesized as the condensation of a p-substituted benzoic acid and a polyisoprenic moiety catalyzed by the enzyme 4-hydroxybenzoate polyprenyltransferase (EC 2.5.1.39). In Plasmodium spp., this enzyme is still uncharacterized. In this work, we expressed the sequence of the Plasmodium falciparum PF3D7_0607500 gene (abbreviated as PfCOQ2) in a coq2Δ mutant strain of Saccharomyces cerevisiae, and studied the functionality of its gene product. This open reading frame could complement S. cerevisiae coq2Δ mutant growth defect on media with glycerol as a carbon source. Further, UQ was unequivocally identified in lipid extracts from this coq2Δ mutant when expressing PfCOQ2. Remarkably, UQ was detected under those conditions when S. cerevisiae cells were metabolically labeled with either [ring-14C(U)]-p-aminobenzoic acid or [ring-14C(U)]-4-hydroxybenzoic acid. However, no UQ was detected in P. falciparum if labeled with p-aminobenzoic acid. These results indicate that PfCOQ2 is a 4-hydroxybenzoate polyprenyltransferase. Further, its substrate profile seems not dissimilar to that of S. cerevisiae, but, as in other organisms, p-aminobenzoic acid does not act as an aromatic precursor in UQ biosynthesis in P. falciparum. The reason for this last feature remains to be established, but may lie upstream of PfCOQ2.


Assuntos
Plasmodium falciparum , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Plasmodium falciparum/genética , Ácido 4-Aminobenzoico
3.
Biol Chem ; 404(1): 15-27, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36165810

RESUMO

Enzyme behaviour is characterised in the laboratory using diluted solutions of enzyme. However, in vivo processes usually occur at [S T ] ≈ [E T ] ≈ K m . Furthermore, the study of enzyme action involves characterisation of inhibitors and their mechanisms. However, to date, there have been no reports proposing mathematical expressions that can be used to describe enzyme activity at high enzyme concentration apart from the simplest single substrate, irreversible case. Using a continued fraction approach, equations can be easily derived for the most common cases in monosubstrate reactions, such as irreversible or reversible reactions and effector (inhibitor or activator) kinetic interactions. These expressions are an extension of the classical Michaelis-Menten equations. A first analysis using these expressions permits to deduce some differences at high versus low enzyme concentration, such as the greater effectiveness of allosteric inhibitors compared to catalytic ones. Also, they can be used to understand catalyst saturation in a reaction. Although they can be linearised, these equations also show differences that need to be taken into account. For example, the different meaning of line intersection points in Dixon plots. All in all, these expressions may be useful tools for modelling in vivo and biotechnological processes.


Assuntos
Cinética , Catálise
5.
Cell Calcium ; 109: 102688, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538845

RESUMO

Contact sites between the endoplasmic reticulum (ER) and mitochondria play a pivotal role in cell signaling, and the interaction between these organelles is dynamic and finely regulated. We have studied the role of ER Ca2+ concentration ([Ca2+]ER) in modulating this association in HeLa and HEK293 cells and human fibroblasts. According to Manders' coefficient, ER-mitochondria colocalization varied depending on the ER marker; it was the highest with ER-Tracker and the lowest with ER Ca2+ indicators (Mag-Fluo-4, erGAP3, and G-CEPIA1er) in both HeLa cells and human fibroblasts. Only GEM-CEPIA1er displayed a high colocalization with elongated mitochondria in HeLa cells, this ER Ca2+ indicator reveals low Ca2+ regions because this ion quenches its fluorescence. On the contrary, the typical rounded and fragmented mitochondria of HEK293 cells colocalized with Mag-Fluo-4 and, to a lesser extent, with GEM-CEPIA1er. The ablation of the three IP3R isoforms in HEK293 cells increased mitochondria-GEM-CEPIA1er colocalization. This pattern of colocalization was inversely correlated with the rate of ER Ca2+ leak evoked by thapsigargin (Tg). Moreover, Tg and Histamine in the absence of external Ca2+ increased mitochondria-ER colocalization. On the contrary, in the presence of external Ca2+, both Bafilomycin A1 and Tg reduced the mitochondria-ER interaction. Notably, knocking down MCU decreased mitochondria-ER colocalization. Overall, our data suggest that the [Ca2+] is not homogenous within the ER lumen and that mitochondria-ER interaction is modulated by the ER Ca2+ leak and the [Ca2+]i.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Humanos , Células HeLa , Células HEK293 , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Tapsigargina/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio
6.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557825

RESUMO

Isoprenoids are the output of the polymerization of five-carbon, branched isoprenic chains derived from isopentenyl pyrophosphate (IPP) and its isomer, dimethylallyl pyrophosphate (DMAPP). Isoprene units are consecutively condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively), necessary for the biosynthesis of several metabolites. Polyprenyl transferases and synthases use polyprenyl pyrophosphates as their natural substrates; however, it is known that free polyprenols, such as farnesol (FOH), and geranylgeraniol (GGOH) can be incorporated into prenylated proteins, ubiquinone, cholesterol, and dolichols. Furthermore, FOH and GGOH have been shown to block the effects of isoprenoid biosynthesis inhibitors such as fosmidomycin, bisphosphonates, or statins in several organisms. This phenomenon is the consequence of a short pathway, which was observed for the first time more than 25 years ago: the polyprenol salvage pathway, which works via the phosphorylation of FOH and GGOH. Biochemical studies in bacteria, animals, and plants suggest that this pathway can be carried out by two enzymes: a polyprenol kinase and a polyprenyl-phosphate kinase. However, to date, only a few genes have been unequivocally identified to encode these enzymes in photosynthetic organisms. Nevertheless, pieces of evidence for the importance of this pathway abound in studies related to infectious diseases, cancer, dyslipidemias, and nutrition, and to the mitigation of the secondary effects of several drugs. Furthermore, nowadays it is known that both FOH and GGOH can be incorporated via dietary sources that produce various biological effects. This review presents, in a simplified but comprehensive manner, the most important data on the FOH and GGOH salvage pathway, stressing its biomedical importance The main objective of this review is to bring to light the need to discover and characterize the kinases associated with the isoprenoid salvage pathway in animals and pathogens.


Assuntos
Diterpenos , Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Farneseno Álcool/farmacologia , Diterpenos/farmacologia , Diterpenos/metabolismo , Terpenos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia
7.
Front Physiol ; 13: 925023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837019

RESUMO

PKC inhibitors stimulate Ca2+ release from internal stores in diverse cell types. Our data indicate that this action cannot be explained by an increased agonist-induced IP3 production or an overloaded SR Ca2+ pool in smooth muscle cells from guinea pig urinary bladder. The incubation of these cells with three different PKC inhibitors, such as Go6976, Go6983, and BIM 1, resulted in a higher SR Ca2+ leak revealed by inhibition of the SERCA pump with thapsigargin. This SR Ca2+ leakage was sensitive to protein translocation inhibitors such as emetine and anisomycin. Since this increased SR Ca2+ leak did not result in a depleted SR Ca2+ store, we have inferred there was a compensatory increase in SERCA pump activity, resulting in a higher steady-state. This new steady-state increased the frequency of Spontaneous Transient Outward Currents (STOCs), which reflect the activation of high conductance, Ca2+-sensitive potassium channels in response to RyR-mediated Ca2+ sparks. This increased STOC frequency triggered by PKC inhibition was restored to normal by inhibiting translocon-mediated Ca2+ leak with emetine. These results suggest a critical role of PKC-mediated translocon phosphorylation in regulating SR Ca2+ steady-state, which, in turn, alters SR Ca2+ releasing activity.

8.
Cells ; 11(13)2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35805121

RESUMO

The overexpression of the Orai1 channel inhibits SOCE when using the Ca2+ readdition protocol. However, we found that HeLa cells overexpressing the Orai1 channel displayed enhanced Ca2+ entry and a limited ER depletion in response to the combination of ATP and thapsigargin (TG) in the presence of external Ca2+. As these effects require the combination of an agonist and TG, we decided to study whether the phosphorylation of Orai1 S27/S30 residues had any role using two different mutants: Orai1-S27/30A (O1-AA, phosphorylation-resistant) and Orai1-S27/30D (O1-DD, phosphomimetic). Both O1-wt and O1-AA supported enhanced Ca2+ entry, but this was not the case with O1-E106A (dead-pore mutant), O1-DD, and O1-AA-E106A, while O1-wt, O1-E106A, and O1-DD inhibited the ATP and TG-induced reduction of ER [Ca2+], suggesting that the phosphorylation of O1 S27/30 interferes with the IP3R activity. O1-wt and O1-DD displayed an increased interaction with IP3R in response to ATP and TG; however, the O1-AA channel decreased this interaction. The expression of mCherry-O1-AA increased the frequency of ATP-induced sinusoidal [Ca2+]i oscillations, while mCherry-O1-wt and mCherry-O1-DD decreased this frequency. These data suggest that the combination of ATP and TG stimulates Ca2+ entry, and the phosphorylation of Orai1 S27/30 residues by PKC reduces IP3R-mediated Ca2+ release.


Assuntos
Canais de Cálcio , Cálcio , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células HeLa , Humanos , Proteína ORAI1/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Tapsigargina/farmacologia
9.
Front Physiol ; 13: 834220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360237

RESUMO

In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.

10.
Cient. dent. (Ed. impr.) ; 18(3): 201-215, jun.-jul. 2021. ilus
Artigo em Espanhol | IBECS | ID: ibc-217152

RESUMO

El tipo de alimentación que seguimos en nuestra vida cotidiana puede afectar a nuestra salud general y oral. De hecho, una dieta inadecuada se considera un factor de riesgo de las enfermedades crónicas no transmisibles entre las que se encuentra la periodontitis. Aunque los mecanismos patogénicos involucrados se deben determinar con exactitud, parece que la clave del proceso es la capacidad que tiene una alimentación poco saludable de condicionar la respuesta inflamatoria. Para aclarar mitos y realidades que rodean la relación entre la salud periodontal y la alimentación se realiza esta revisión narrativa de los conocimientos actuales. Para ello es necesario preguntarse cómo la respuesta inflamatoria puede ser modificada por la ingesta continuada de determinados alimentos, y cómo esa respuesta inflamatoria alterada puede participar en la patogénesis de la periodontitis. Las dietas ricas en hidratos de carbono refinados y/o en grasas saturadas y trans son capaces de inducir inflamación. Y esa respuesta inflamatoria hiperactivada participa de forma activa en la patogénesis de las periodontitis, contribuyendo a la destrucción de los tejidos periodontales. (AU)


The diet that we follow daily can affect our general and oral health. In fact, an inadequate diet is considered a risk factor for chronic non-communicable diseases, including periodontitis. Although the pathogenic mechanisms involved must be determined exactly, it seems that the key to the process is the ability of an unhealthy diet to condition the inflammatory response. To clarify myths and realities surrounding the relationship between periodontal health and diet, this narrative review of current knowledge is carried out. For this, it is necessary to ask ourselves how the inflammatory response can be modified by the continued intake of certain foods, and how this altered inflammatory response can participate in the pathogenesis of periodontitis. Diets rich in refined carbohydrates and / or saturated and trans fats are capable of inducing inflammation. And that hyperactivated inflammatory response actively participates in the pathogenesis of periodontitis, contributing to the destruction of periodontal tissues. (AU)


Assuntos
Humanos , 52503 , Periodontite/dietoterapia , Alimento Funcional , Micronutrientes , Antioxidantes , Estresse Oxidativo
11.
Metabolites ; 11(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562475

RESUMO

Experimental evidence in mice models has demonstrated that a high regulator of G-protein signaling 2 (RSG2) protein levels precede an insulin resistance state. In the same context, a diet rich in saturated fatty acids induces an increase in RGS2 protein expression, which has been associated with decreased basal metabolism in mice; however, the above has not yet been analyzed in humans. For this reason, in the present study, we examined the association between RGS2 expression and insulin resistance state. The incubation with palmitic acid (PA), which inhibits insulin-mediated Akt Ser473 phosphorylation, resulted in the increased RGS2 expression in human umbilical vein endothelial-CS (HUVEC-CS) cells. The RGS2 overexpression without PA was enough to inhibit insulin-mediated Akt Ser473 phosphorylation in HUVEC-CS cells. Remarkably, the platelet RGS2 expression levels were higher in type 2 diabetes mellitus (T2DM) patients than in healthy donors. Moreover, an unbiased principal component analysis (PCA) revealed that RGS2 expression level positively correlated with glycated hemoglobin (HbA1c) and negatively with age and high-density lipoprotein cholesterol (HDL) in T2DM patients. Furthermore, PCA showed that healthy subjects segregated from T2DM patients by having lower levels of HbA1c and RGS2. These results demonstrate that RGS2 overexpression leads to decreased insulin signaling in a human endothelial cell line and is associated with poorly controlled diabetes.

12.
Biochem J ; 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33094814

RESUMO

Abnormal sterols disrupt cellular functions through yet unclear mechanisms. In Saccharomyces cerevisiae, accumulation of Δ8-sterols, the same type of sterols observed in patients of Conradi-Hünermann-Happle syndrome or in fungi after amine fungicide treatment, leads to cell wall weakness. We have studied the influence of Δ8-sterols on the activity of glucan synthase I, the protein synthetizing the main polymer in fungal cell walls, its regulation by the Cell Wall Integrity (CWI) pathway, and its transport from the endoplasmic reticulum to the plasma membrane. We ascertained that the catalytic characteristics were mostly unaffected by the presence of abnormal sterols but the enzyme was partially retained in the endoplasmic reticulum, leading to glucan deficit at the cell wall. Furthermore, we observed that glucan synthase I traveled through an unconventional exocytic route to the plasma membrane that is associated with low density intracellular membranes. Also, we found out that the CWI pathway remained inactive despite low glucan levels at the cell wall. Taken together, these data suggest that Δ8-sterols affect cell walls by inhibiting unconventional secretion of proteins leading to retention and degradation of glucan synthase I, while the compensatory CWI pathway is unable to activate. These results could be instrumental to understand defects of bone development in cholesterol biosynthesis disorders and fungicide mechanisms of action.

13.
Front Cell Dev Biol ; 8: 544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714930

RESUMO

In this study we evaluated the effect of the reduction in the endoplasmic reticulum calcium concentration ([Ca2+]ER), changes in the cytoplasmic calcium concentration ([Ca2+]i), alteration of the mitochondrial membrane potential, and the ER stress in the activation of caspase-3 in neonatal cerebellar granule cells (CGN). The cells were loaded with Fura-2 to detect changes in the [Ca2+]i and with Mag-fluo-4 to measure variations in the [Ca2+]ER or with TMRE to follow modifications in the mitochondrial membrane potential in response to five different inducers of CGN cell death. These inducers were staurosporine, thapsigargin, tunicamycin, nifedipine and plasma membrane repolarization by switching culture medium from 25 mM KCl (K25) to 5 mM KCl (K5). Additionally, different markers of ER stress were determined and all these parameters were correlated with the activation of caspase-3. The different inducers of cell death in CGN resulted in three different levels of activation of caspase-3. The highest caspase-3 activity occurred in response to K5. At the same time, staurosporine, nifedipine, and tunicamycin elicited an intermediate activation of caspase-3. Importantly, thapsigargin did not activate caspase-3 at any time. Both K5 and nifedipine rapidly decreased the [Ca2+]i, but only K5 immediately reduced the [Ca2+]ER and the mitochondrial membrane potential. Staurosporine and tunicamycin increased the [Ca2+]i and they decreased both the [Ca2+]ER and mitochondrial membrane potential, but at a much lower rate than K5. Thapsigargin strongly increased the [Ca2+]i, but it took 10 min to observe any decrease in the mitochondrial membrane potential. Three cell death inducers -K5, staurosporine, and thapsigargin- elicited ER stress, but they took 30 min to have any effect. Thapsigargin, as expected, displayed the highest efficacy activating PERK. Moreover, a specific PERK inhibitor did not have any impact on cell death triggered by these cell death inducers. Our data suggest that voltage-gated Ca2+ channels, that are not dihydropyridine-sensitive, load the ER with Ca2+ and this Ca2+ flux plays a critical role in keeping the mitochondrial membrane potential polarized. A rapid decrease in the [Ca2+]ER resulted in rapid mitochondrial membrane depolarization and strong activation of caspase-3 without the intervention of the ER stress in CGN.

14.
Adv Exp Med Biol ; 1131: 337-370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646517

RESUMO

The sarcoplasmic/endoplasmic reticulum (SR/ER) is the main intracellular calcium (Ca2+) pool in muscle and non-muscle eukaryotic cells, respectively. The reticulum accumulates Ca2+ against its electrochemical gradient by the action of sarco/endoplasmic reticulum calcium ATPases (SERCA pumps), and the capacity of this Ca2+ store is increased by the presence of Ca2+ binding proteins in the lumen of the reticulum. A diversity of physical and chemical signals, activate the main Ca2+ release channels, i.e. ryanodine receptors (RyRs) and inositol (1, 4, 5) trisphosphate receptors (IP3Rs), to produce transient elevations of the cytoplasmic calcium concentration ([Ca2+]i) while the reticulum is being depleted of Ca2+. This picture is incomplete because it implies that the elements involved in the Ca2+ release process are acting alone and independently of each other. However, it appears that the Ca2+ released by RyRs and IP3Rs is trapped in luminal Ca2+ binding proteins (Ca2+ lattice), which are associated with these release channels, and the activation of these channels appears to facilitate that the trapped Ca2+ ions become available for release. This situation makes the initial stage of the Ca2+ release process a highly efficient one; accordingly, there is a large increase in the [Ca2+]i with minimal reductions in the bulk of the free luminal SR/ER [Ca2+] ([Ca2+]SR/ER). Additionally, it has been shown that active SERCA pumps are required for attaining this highly efficient Ca2+ release process. All these data indicate that Ca2+ release by the SR/ER is a highly regulated event and not just Ca2+ coming down its electrochemical gradient via the open release channels. One obvious advantage of this sophisticated Ca2+ release process is to avoid depletion of the ER Ca2+ store and accordingly, to prevent the activation of ER stress during each Ca2+ release event.


Assuntos
Cálcio , Retículo Endoplasmático , Retículo Sarcoplasmático , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
16.
J Theor Biol ; 482: 109986, 2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31465729

RESUMO

Reported experimental results, in which transient elevations of sarcoplasmic calcium levels are induced by caffeine in smooth muscle cells, apparently contradict the principle of mass conservation. The commonly accepted model assumes that the total number of Ca2+ binding sites is fixed. A former work dealing with this problem proved that assuming the presence within the reticulum of calcium sequestering proteins whose total number of calcium binding sites increases as the existent sites get occupied, is enough to explain the above referred counter-intuitive experimental results. However, no chemical explanation was given to account for this binding-site count increase. In the present work, we propose a chemical-kinetics scheme for the binding of calcium to calsequestrin (a protein found within the reticulum) and the polymerization of this protein. On the one hand, this scheme is in agreement with reported results on calsequestrin binding kinetics, but it is also fully capable of explaining the observed intriguing performance of the sarcoplasmic reticulum. We further explore the behavior of the resulting nonlinear dynamic system and discuss possible physiological implications of the proposed scheme.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Multimerização Proteica/fisiologia , Retículo Sarcoplasmático/metabolismo , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Calsequestrina/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Cinética , Modelos Teóricos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Polimerização/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos
17.
J Urol ; 202(6): 1150-1158, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31216252

RESUMO

PURPOSE: The EPIC-26 (Expanded Prostate Cancer Index Composite-Short Form) is a validated questionnaire for measuring health related quality of life. However, the relationship between domain scores and functional outcomes remains unclear, leading to potential confusion about expectations after treatment. For instance, does a sexual function domain score of 80 mean that a patient can achieve erection sufficient for intercourse? Consequently we sought to determine the relationship between the domain score and the response to obtaining the best possible outcome for each question. MATERIALS AND METHODS: Using data from the CEASAR (Comparative Effectiveness Analysis of Surgery and Radiation) study, a multicenter, prospective study of men diagnosed with localized prostate cancer, we analyzed 11,464 EPIC-26 questionnaires from a total of 2,563 men at baseline through 60 months of followup who were treated with robotic prostatectomy, radiotherapy or active surveillance. We dichotomized every item into its best possible outcome and assessed the percent of men at each domain score who achieved the best result. RESULTS: For every EPIC-26 item the frequency of the best possible outcome was reported by domain score category. For example, a score of 80 to 100 on sexual function corresponded to 97% of men reporting erections sufficient for intercourse while at a score of 40 to 60 only 28% reported adequate erections. Also, at a score of 80 to 100 on the urinary incontinence domain 93% of men reported rarely or never leaking vs 6% at a score of 61 to 80. CONCLUSIONS: Our findings indicate a novel way to interpret EPIC-26 domain scores, demonstrating large variations in the percent of respondents reporting the best possible outcomes over narrow domain score differences. This information may be valuable when counseling men on treatment options.


Assuntos
Medidas de Resultados Relatados pelo Paciente , Neoplasias da Próstata/terapia , Qualidade de Vida , Recuperação de Função Fisiológica , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prostatectomia , Radioterapia , Fatores de Risco
18.
Biochim Biophys Acta Mol Cell Res ; 1866(6): 1019-1033, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30826332

RESUMO

Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite.


Assuntos
Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Difosfatos/metabolismo , Estabilidade Enzimática , Pirofosfatase Inorgânica/genética , Mutagênese , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
20.
Sci Rep ; 8(1): 17143, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464185

RESUMO

The Golgi apparatus (GA) is a bona fide Ca2+ store; however, there is a lack of GA-specific Ca2+ mobilizing agents. Here, we report that emetine specifically releases Ca2+ from GA in HeLa and HL-1 atrial myocytes. Additionally, it has become evident that the trans-Golgi is a labile Ca2+ store that requires a continuous source of Ca2+ from either the external milieu or from the ER, to enable it to produce a detectable transient increase in cytosolic Ca2+. Our data indicates that the emetine-sensitive Ca2+ mobilizing mechanism is different from the two classical Ca2+ release mechanisms, i.e. IP3 and ryanodine receptors. This newly discovered ability of emetine to release Ca2+ from the GA may explain why chronic consumption of ipecac syrup has muscle side effects.


Assuntos
Antinematódeos/farmacologia , Cálcio/metabolismo , Emetina/farmacologia , Células Epiteliais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Rede trans-Golgi/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...